Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans.

نویسندگان

  • Morgan Lévénez
  • S Jayne Garland
  • Malgorzata Klass
  • Jacques Duchateau
چکیده

This study investigates the control mechanisms at the cortical and spinal levels of antagonist coactivation during a submaximal fatiguing contraction of the elbow flexors at 50% of maximal voluntary contraction (MVC). We recorded motor-evoked potentials in the biceps brachii and triceps brachii muscles in response to magnetic stimulation of the motor cortex (MEP) and corticospinal tract (cervicomedullary motor-evoked potentials--CMEPs), as well as the Hoffmann reflex (H-reflex) and maximal M-wave (Mmax) elicited by electrical stimulation of the brachial plexus, before, during, and after the fatigue task. The results showed that although the coactivation ratio did not change at task failure, the MVC torque produced by the elbow flexors declined by 48% (P < 0.01) with no change in MVC torque for the elbow extensors. While the MEP and CMEP areas (normalized to Mmax) of the biceps brachii increased ( approximately 50%) over the first 40% of the time to task failure and then plateaued, both responses in the triceps brachii increased ( approximately 150-180%) gradually throughout the fatigue task. In contrast to the monotonic increase in the MEP and CMEP of the antagonist muscles, the H-reflex of the triceps brachii exhibited a biphasic modulation, increasing during the first part of the contraction before declining subsequently to 65% of its initial value. Collectively, these results suggest that the level of coactivation during a fatiguing contraction is mediated by supraspinal rather than spinal mechanisms and involves differential control of agonist and antagonist muscles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spinal reflexes and coactivation of ankle muscles during a submaximal fatiguing contraction.

This study examined the involvement of spinal mechanisms in the control of coactivation during a sustained contraction of the ankle dorsiflexors at 50% of maximal voluntary contraction. Changes in the surface electromyogram (EMG) of the tibialis anterior and of two antagonist muscles, the soleus and lateral gastrocnemius, were investigated during and after the fatigue task. Concurrently, the co...

متن کامل

Time to task failure and muscle activation vary with load type for a submaximal fatiguing contraction with the lower leg.

The purpose was to compare the time to failure and muscle activation patterns for a sustained isometric submaximal contraction with the dorsiflexor muscles when the foot was restrained to a force transducer (force task) compared with supporting an equivalent inertial load and unrestrained (position task). Fifteen men and women (mean+/-SD; 21.1+/-1.4 yr) performed the force and position tasks at...

متن کامل

Increase in heterogeneity of biceps brachii activation during isometric submaximal fatiguing contractions: a multichannel surface EMG study.

The effects of fatigue emerge from the beginning of sustained submaximal contractions, as shown by an increase in the amplitude of the surface electromyogram (EMG). The increase in EMG amplitude is attributed to an augmentation of the excitatory drive to the motor neuron pool that, more importantly than increasing discharge rates, recruits additional motor units for the contraction. The aim of ...

متن کامل

Specific modulation of spinal and cortical excitabilities during lengthening and shortening submaximal and maximal contractions in plantar flexor muscles.

This study investigated the influence of the torque produced by plantar flexor muscles on cortical and spinal excitability during lengthening and shortening voluntary contractions. To that purpose, modulations of motor-evoked potential (MEP) and Hoffmann (H) reflex were compared in the soleus (SOL) and medial gastrocnemius (MG) during anisometric submaximal and maximal voluntary contraction (MV...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 99 2  شماره 

صفحات  -

تاریخ انتشار 2008